Triangulation.js 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
// Ear clipping polygon triangulation.

// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf

// http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html
// Z Order Hash ?

import LinkedList from 'claygl/src/core/LinkedList';

// From x,y point cast a ray to right. and intersect with edge x0, y0, x1, y1;
// Return x value of intersect point
function intersectEdge(x0, y0, x1, y1, x, y) {
    if ((y > y0 && y > y1) || (y < y0 && y < y1)) {
        return -Infinity;
    }
    // Ignore horizontal line
    if (y1 === y0) {
        return -Infinity;
    }
    var dir = y1 < y0 ? 1 : -1;
    var t = (y - y0) / (y1 - y0);

    // Avoid winding error when intersection point is the connect point of two line of polygon
    if (t === 1 || t === 0) {
        dir = y1 < y0 ? 0.5 : -0.5;
    }

    var x_ = t * (x1 - x0) + x0;

    return x_;
};

function triangleArea(x0, y0, x1, y1, x2, y2) {
    return (x1 - x0) * (y2 - y1) - (y1 - y0) * (x2 - x1);
}

function isPointInTriangle(x0, y0, x1, y1, x2, y2, xi, yi) {
    return !(triangleArea(x0, y0, x2, y2, xi, yi) <= 0
        || triangleArea(x0, y0, xi, yi, x1, y1) <= 0
        || triangleArea(xi, yi, x2, y2, x1, y1) <= 0);
}

function area(points) {
    // Signed polygon area
    var n = points.length / 2;
    if (n < 3) {
        return 0;
    }
    var area = 0;
    for (var i = (n - 1) * 2, j = 0; j < n * 2;) {
        var x0 = points[i];
        var y0 = points[i + 1];
        var x1 = points[j];
        var y1 = points[j + 1];
        i = j;
        j += 2;
        area += x0 * y1 - x1 * y0;
    }

    return area;
}

function reverse(points, stride) {
    var n = points.length / stride;
    for (var i = 0; i < Math.floor(n / 2); i++) {
        for (var j = 0; j < stride; j++) {
            var a = i * stride + j;
            var b = (n - i - 1) * stride + j;
            var tmp = points[a];
            points[a] = points[b];
            points[b] = tmp;
        }
    }

    return points;
}

var VERTEX_TYPE_CONVEX = 1;
var VERTEX_TYPE_REFLEX = 2;

var VERTEX_COUNT_NEEDS_GRID = 50;

function Point(idx) {
    this.idx = idx;
}

var TriangulationContext = function () {

    this.points = [];

    this.triangles = [];

    this.maxGridNumber = 50;

    this.minGridNumber = 4;

    this._gridNumber = 20;

    this._boundingBox = [[Infinity, Infinity], [-Infinity, -Infinity]];

    this._nPoints = 0;

    this._pointsTypes = [];

    this._grids = [];

    this._gridWidth = 0;
    this._gridHeight = 0;

    this._candidates = null;
}

/**
 * @param {Array.<number>} exterior. Exterior points
 *      exterior should be clockwise order. (When y is from bottom to top)
 * @param {Array.<Array>} holes. holes should be counter clockwise order.
 */
TriangulationContext.prototype.triangulate = function (exterior, holes) {
    this._nPoints = exterior.length / 2;
    if (this._nPoints < 3) {
        return;
    }

    // PENDING Dynamic grid number or fixed grid number ?
    this._gridNumber = Math.ceil(Math.sqrt(this._nPoints) / 2);
    this._gridNumber = Math.max(Math.min(this._gridNumber, this.maxGridNumber), this.minGridNumber);

    this.points = exterior;

    this._needsGreed = this._nPoints > VERTEX_COUNT_NEEDS_GRID;

    if (area(this.points) > 0) {
        // Don't konw why, but use slice is more faster than new Float32Array(this.points).
        this.points = this.points.slice();
        reverse(this.points, 2);
    }

    this.holes = (holes || []).map(function (hole) {
        if (area(hole) < 0) {
            hole = hole.slice();
            reverse(hole, 2);
        }
        return hole;
    });

    this._reset();

    this._prepare();

    this._earClipping();
}

TriangulationContext.prototype._reset = function () {

    this._candidates = new LinkedList();
    this.triangles = [];

    this._boundingBox[0][0] = this._boundingBox[0][1] = Infinity;
    this._boundingBox[1][0] = this._boundingBox[1][1] = -Infinity;
    // Initialize grid

    var nGrids = this._gridNumber * this._gridNumber;
    for (var i = 0; i < nGrids; i++) {
        this._grids[i] = [];
    }
    this._grids.length = nGrids;
}

// Prepare points
TriangulationContext.prototype._prepare = function () {
    var bb = this._boundingBox;
    var n = this._nPoints;
    var points = this.points;

    this._pointsTypes = [];

    // Update bounding box and determine point type is reflex or convex
    for (var i = 0, j = n - 1; i < n;) {
        var k = (i + 1) % n;
        var x0 = points[j * 2];
        var y0 = points[j * 2 + 1];
        var x1 = points[i * 2];
        var y1 = points[i * 2 + 1];
        var x2 = points[k * 2];
        var y2 = points[k * 2 + 1];

        if (this._needsGreed) {
            if (x1 < bb[0][0]) { bb[0][0] = x1; }
            if (y1 < bb[0][1]) { bb[0][1] = y1; }
            if (x1 > bb[1][0]) { bb[1][0] = x1; }
            if (y1 > bb[1][1]) { bb[1][1] = y1; }

            // Make the bounding box a litte bigger
            // Avoid the geometry hashing will touching the bound of the bounding box
            bb[0][0] -= 0.1;
            bb[0][1] -= 0.1;
            bb[1][0] += 0.1;
            bb[1][1] += 0.1;
        }

        var area = triangleArea(x0, y0, x1, y1, x2, y2);

        // Including 0.
        this._pointsTypes[i] = area <= 0 ? VERTEX_TYPE_CONVEX : VERTEX_TYPE_REFLEX;

        j = i;
        i++;
    }

    this._cutHoles();

    // points may be changed after cutHoles.
    n = this._nPoints;
    points = this.points;

    // Init candidates.
    for (var i= 0; i < n; i++) {
        this._candidates.insert(new Point(i));
    }

    // Put the points in the grids
    if (this._needsGreed) {
        this._gridWidth = (bb[1][0] - bb[0][0]) / this._gridNumber;
        this._gridHeight = (bb[1][1] - bb[0][1]) / this._gridNumber;
        for (var i = 0; i < n; i++) {
            var x = points[i * 2];
            var y = points[i * 2 + 1];
            if (this._pointsTypes[i] == VERTEX_TYPE_REFLEX) {
                var key = this._getPointHash(x, y);
                this._grids[key].push(i);
            }
        }
    }
};

// Finding Mutually Visible Vertices and cut the polygon to remove holes.
TriangulationContext.prototype._cutHoles = function () {
    var holes = this.holes;

    if (!holes.length) {
        return;
    }
    holes = holes.slice();
    var xMaxOfHoles = [];
    var xMaxIndicesOfHoles = [];
    for (var i = 0; i < holes.length; i++) {
        var hole = holes[i];
        var holeMaxX = -Infinity;
        var holeMaxXIndex = 0;
        // Find index of xMax in the hole.
        for (var k = 0; k < hole.length; k += 2) {
            var x = hole[k * 2];
            if (x > holeMaxX) {
                holeMaxXIndex = k / 2;
                holeMaxX = x;
            }
        }
        xMaxOfHoles.push(holeMaxX);
        xMaxIndicesOfHoles.push(holeMaxXIndex);
    }

    var self = this;
    function cutHole() {
        var points = self.points;
        var nPoints = self._nPoints;

        var holeMaxX = -Infinity;
        var holeMaxXIndex = 0;
        var holeIndex = 0;
        // Find hole which xMax is rightest
        for (var i = 0; i < xMaxOfHoles.length; i++) {
            if (xMaxOfHoles[i] > holeMaxX) {
                holeMaxX = xMaxOfHoles[i];
                holeMaxXIndex = xMaxIndicesOfHoles[i];
                holeIndex = i;
            }
        }

        var holePoints = holes[holeIndex];

        xMaxOfHoles.splice(holeIndex, 1);
        xMaxIndicesOfHoles.splice(holeIndex, 1);
        holes.splice(holeIndex, 1);

        var holePointX = holePoints[holeMaxXIndex * 2];
        var holePointY = holePoints[holeMaxXIndex * 2 + 1];
        var minRayX = Infinity;
        var edgeStartPointIndex = -1;
        // Find nearest intersected line
        for (var i = 0, j = points.length - 2; i < points.length; i += 2) {
            var x0 = points[j], y0 = points[j + 1];
            var x1 = points[i], y1 = points[i + 1];

            var rayX = intersectEdge(x0, y0, x1, y1, holePointX, holePointY);
            if (rayX >= holePointX) {
                // Intersected.
                if (rayX < minRayX) {
                    minRayX = rayX;
                    edgeStartPointIndex = j / 2;
                }
            }

            j = i;
        }
        // Didn't find
        if (edgeStartPointIndex < 0) {
            if (process.env.NODE_ENV !== 'production') {
                console.warn('Hole must be inside exterior.');
            }
            return;
        }
        var edgeEndPointIndex = (edgeStartPointIndex + 1) % (points.length / 2);
        // Point of seam edge/
        var seamPointIndex = (points[edgeStartPointIndex * 2] > points[edgeEndPointIndex * 2]) ? edgeStartPointIndex : edgeEndPointIndex;
        // Use maximum x of edge
        var seamX = points[seamPointIndex * 2];
        var seamY = points[seamPointIndex * 2 + 1];

        var minimumAngleCos = Infinity;
        // And figure out if any of reflex points is in the triangle,
        // if has, use the reflex point with minimum angle with (1, 0)
        for (var i = 0; i < nPoints; i++) {
            if (self._pointsTypes[i] === VERTEX_TYPE_REFLEX) {
                var xi = points[i * 2];
                var yi = points[i * 2 + 1];
                if (isPointInTriangle(holePointX, holePointY, minRayX, holePointY, seamX, seamY, xi, yi)) {
                    // Use dot product with (1, 0) as angle
                    var dx = xi - holePointX;
                    var dy = yi - holePointY;
                    var len = Math.sqrt(dx * dx + dy * dy);
                    dx /= len; dy /= len;
                    var angleCos = dx * dx;
                    if (angleCos < minimumAngleCos) {
                        minimumAngleCos = angleCos;
                        // Replaced seam.
                        seamPointIndex = i;
                    }
                }
            }
        }

        // TODO Use splice to add maybe slow
        var newPointsCount = nPoints + holePoints.length / 2 + 2;
        var newPoints = new Float32Array(newPointsCount * 2);
        var newPointsTypes = new Uint8Array(newPointsCount);
        seamX = points[seamPointIndex * 2];
        seamY = points[seamPointIndex * 2 + 1];

        var offPt = 0;
        var offType = 0;

        // x, y, prevX, prevY, nextX, nextY is used for point type.
        var x, y;
        var prevX, prevY, nextX, nextY;
        function copyPoints(idx, source) {
            prevX = x;
            prevY = y;
            x = newPoints[offPt++] = source[idx * 2];
            y = newPoints[offPt++] = source[idx * 2 + 1];
        }
        function guessAndAddPointType() {
            var type = triangleArea(prevX, prevY, x, y, nextX, nextY) < 0 ? VERTEX_TYPE_CONVEX : VERTEX_TYPE_REFLEX;
            newPointsTypes[offType++] = type;
        }

        for (var i = 0; i < seamPointIndex; i++) {
            copyPoints(i, points);
            newPointsTypes[offType++] = self._pointsTypes[i];
        }
        copyPoints(seamPointIndex, points);
        if (0 === seamPointIndex) { // In case first point is seam.
            prevX = points[nPoints * 2 - 2];
            prevY = points[nPoints * 2 - 1];
        }
        nextX = holePoints[holeMaxXIndex * 2];
        nextY = holePoints[holeMaxXIndex * 2 + 1];

        guessAndAddPointType();

        // Add hole
        for (var i = 0, holePointsCount = holePoints.length / 2; i < holePointsCount; i++) {
            var idx = (i + holeMaxXIndex) % holePointsCount;
            copyPoints(idx, holePoints);

            var nextIdx = (idx + 1) % holePointsCount;
            nextX = holePoints[nextIdx * 2]; nextY = holePoints[nextIdx * 2 + 1];
            guessAndAddPointType();
        }
        // Add another seam.
        copyPoints(holeMaxXIndex, holePoints);
        nextX = seamX; nextY = seamY;
        guessAndAddPointType();
        copyPoints(seamPointIndex, points);
        var nextIdx = (seamPointIndex + 1) % nPoints;
        nextX = points[nextIdx * 2]; nextY = points[nextIdx * 2 + 1];
        guessAndAddPointType();

        // Add rest
        for (var i = seamPointIndex + 1; i < nPoints; i++) {
            copyPoints(i, points);
            newPointsTypes[offType++] = self._pointsTypes[i];
        }

        // Update points and pointsTypes
        self.points = newPoints;
        self._pointsTypes = newPointsTypes;
        self._nPoints = newPointsCount;
    }

    var count = holes.length;
    while (count--) {
        cutHole();
    }
};

TriangulationContext.prototype._earClipping = function () {
    var candidates = this._candidates;
    while (candidates.length() > 2) {
        var isDesperate = true;
        var entry = candidates.head;
        while (entry && candidates.length() > 2) {
            if (this._isEar(entry)) {
                entry = this._clipEar(entry);
                isDesperate = false;
            }
            else {
                entry = entry.next;
            }
        }

        if (isDesperate && candidates.length() > 2) {
            // var entry = candidates.head;
            // console.log('------');
            // while (entry) {
            //     var idx = entry.value.idx;
            //     var xi = this.points[idx * 2];
            //     var yi = this.points[idx * 2 + 1];
            //     console.log([xi, yi]);
            //     entry = entry.next;
            // }


            // Random pick a convex vertex when there is no more ear
            // can be clipped and there are more than 3 points left
            // After clip the random picked vertex, go on finding ears again
            // So it can be extremely slow in worst case
            // TODO
            this._clipEar(candidates.head);
        }
    }
}

TriangulationContext.prototype._isEar = function (pointEntry) {
    if (this._pointsTypes[pointEntry.value.idx] === VERTEX_TYPE_REFLEX) {
        return;
    }

    var points = this.points;

    var prevPointEntry = pointEntry.prev || this._candidates.tail;
    var nextPointEntry = pointEntry.next || this._candidates.head;
    var p0 = prevPointEntry.value.idx;
    var p1 = pointEntry.value.idx;
    var p2 = nextPointEntry.value.idx;

    p0 *= 2;
    p1 *= 2;
    p2 *= 2;
    var x0 = points[p0];
    var y0 = points[p0 + 1];
    var x1 = points[p1];
    var y1 = points[p1 + 1];
    var x2 = points[p2];
    var y2 = points[p2 + 1];

    // Clipped the tiny triangles directly
    if (Math.abs(triangleArea(x0, y0, x1, y1, x2, y2)) < Number.EPSILON) {
        return true;
    }

    if (this._needsGreed) {
        var range = this._getTriangleGrids(x0, y0, x1, y1, x2, y2);

        // Find all the points in the grids covered by the triangle
        // And figure out if any of them is in the triangle
        for (var j = range[0][1]; j <= range[1][1]; j++) {
            for (var i = range[0][0]; i <= range[1][0]; i++) {
                var gridIdx = j * this._gridNumber + i;
                var gridPoints = this._grids[gridIdx];

                for (var k = 0; k < gridPoints.length; k++) {
                    var idx = gridPoints[k];
                    if (this._pointsTypes[idx] == VERTEX_TYPE_REFLEX) {
                        var xi = points[idx * 2];
                        var yi = points[idx * 2 + 1];
                        if (isPointInTriangle(x0, y0, x1, y1, x2, y2, xi, yi)) {
                            return false;
                        }
                    }
                }
            }
        }
    }
    else {
        var entry = this._candidates.head;
        while (entry) {
            var idx = entry.value.idx;
            var xi = points[idx * 2];
            var yi = points[idx * 2 + 1];
            if (this._pointsTypes[idx] == VERTEX_TYPE_REFLEX) {
                if (isPointInTriangle(x0, y0, x1, y1, x2, y2, xi, yi)) {
                    return false;
                }
            }
            entry = entry.next;
        }
    }

    return true;
}

TriangulationContext.prototype._clipEar = function (pointEntry) {

    var candidates = this._candidates;

    var prevPointEntry = pointEntry.prev || candidates.tail;
    var nextPointEntry = pointEntry.next || candidates.head;

    var p0 = prevPointEntry.value.idx;
    var p1 = pointEntry.value.idx;
    var p2 = nextPointEntry.value.idx;

    var triangles = this.triangles;
    // FIXME e0 may same with e1
    triangles.push(p0);
    triangles.push(p1);
    triangles.push(p2);

    // PENDING
    // The index in the grids also needs to be removed
    // But because it needs `splice` and `indexOf`
    // may cost too much
    candidates.remove(pointEntry);

    if (candidates.length() === 3) {
        triangles.push(p0);
        triangles.push(p2);
        triangles.push((nextPointEntry.next || candidates.head).value.idx);
        return;
    }

    var nextNextPointEntry = nextPointEntry.next || candidates.head;
    var prevPrevPointEntry = prevPointEntry.prev || candidates.tail;

    var p0 = prevPrevPointEntry.value.idx;
    var p1 = prevPointEntry.value.idx;
    var p2 = nextPointEntry.value.idx;
    var p3 = nextNextPointEntry.value.idx;
    // Update p1, p2, vertex type.
    // New candidate after clipping (convex vertex)
    this._pointsTypes[p1] = this.isTriangleConvex2(p0, p1, p2) ? VERTEX_TYPE_CONVEX : VERTEX_TYPE_REFLEX;
    this._pointsTypes[p2] = this.isTriangleConvex2(p1, p2, p3) ? VERTEX_TYPE_CONVEX : VERTEX_TYPE_REFLEX;

    return prevPointEntry;
};

// Get geometric hash of point
// Actually it will find the grid index by giving the point (x y)
TriangulationContext.prototype._getPointHash = function (x, y) {
    var bb = this._boundingBox;
    return Math.floor((y - bb[0][1]) / this._gridHeight) * this._gridNumber
        + Math.floor((x - bb[0][0]) / this._gridWidth);
};

// Get the grid range covered by the triangle
TriangulationContext.prototype._getTriangleGrids = (function () {
    var range = [[-1, -1], [-1, -1]];
    var minX, minY, maxX, maxY;
    return function (x0, y0, x1, y1, x2, y2) {
        var bb = this._boundingBox;

        minX = maxX = x0;
        minY = maxY = y0;
        if (x1 < minX) { minX = x1; }
        if (y1 < minY) { minY = y1; }
        if (x1 > maxX) { maxX = x1; }
        if (y1 > maxY) { maxY = y1; }
        if (x2 < minX) { minX = x2; }
        if (y2 < minY) { minY = y2; }
        if (x2 > maxX) { maxX = x2; }
        if (y2 > maxY) { maxY = y2; }

        range[0][0] = Math.floor((minX - bb[0][0]) / this._gridWidth);
        range[1][0] = Math.floor((maxX - bb[0][0]) / this._gridWidth);

        range[0][1] = Math.floor((minY - bb[0][1]) / this._gridHeight);
        range[1][1] = Math.floor((maxY - bb[0][1]) / this._gridHeight);

        return range;
    };
})();

TriangulationContext.prototype.isTriangleConvex2 = function (p0, p1, p2) {
    // Including 0
    return this.triangleArea(p0, p1, p2) <= 0;
};

TriangulationContext.prototype.triangleArea = function (p0, p1, p2) {
    var x0 = this.points[p0 * 2];
    var y0 = this.points[p0 * 2 + 1];
    var x1 = this.points[p1 * 2];
    var y1 = this.points[p1 * 2 + 1];
    var x2 = this.points[p2 * 2];
    var y2 = this.points[p2 * 2 + 1];
    return (x1 - x0) * (y2 - y1) - (y1 - y0) * (x2 - x1);
};

export default TriangulationContext;