SSR.glsl
13.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// http://www.kode80.com/blog/2015/03/11/screen-space-reflections-in-unity-5/
// http://casual-effects.blogspot.jp/2014/08/screen-space-ray-tracing.html
@export ecgl.ssr.main
#define SHADER_NAME SSR
#define MAX_ITERATION 20;
#define SAMPLE_PER_FRAME 5;
#define TOTAL_SAMPLES 128;
uniform sampler2D sourceTexture;
uniform sampler2D gBufferTexture1;
uniform sampler2D gBufferTexture2;
uniform sampler2D gBufferTexture3;
uniform samplerCube specularCubemap;
uniform float specularIntensity: 1;
uniform mat4 projection;
uniform mat4 projectionInv;
uniform mat4 toViewSpace;
uniform mat4 toWorldSpace;
uniform float maxRayDistance: 200;
uniform float pixelStride: 16;
uniform float pixelStrideZCutoff: 50; // ray origin Z at this distance will have a pixel stride of 1.0
uniform float screenEdgeFadeStart: 0.9; // distance to screen edge that ray hits will start to fade (0.0 -> 1.0)
uniform float eyeFadeStart : 0.2; // ray direction's Z that ray hits will start to fade (0.0 -> 1.0)
uniform float eyeFadeEnd: 0.8; // ray direction's Z that ray hits will be cut (0.0 -> 1.0)
uniform float minGlossiness: 0.2; // Object larger than minGlossiness will have ssr effect
uniform float zThicknessThreshold: 1;
uniform float nearZ;
uniform vec2 viewportSize : VIEWPORT_SIZE;
uniform float jitterOffset: 0;
varying vec2 v_Texcoord;
#ifdef DEPTH_DECODE
@import clay.util.decode_float
#endif
#ifdef PHYSICALLY_CORRECT
// uniform vec3 lambertNormals[SAMPLE_PER_FRAME];
uniform sampler2D normalDistribution;
uniform float sampleOffset: 0;
uniform vec2 normalDistributionSize;
vec3 transformNormal(vec3 H, vec3 N) {
vec3 upVector = N.y > 0.999 ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0);
vec3 tangentX = normalize(cross(N, upVector));
vec3 tangentZ = cross(N, tangentX);
// Tangent to world space
return normalize(tangentX * H.x + N * H.y + tangentZ * H.z);
}
vec3 importanceSampleNormalGGX(float i, float roughness, vec3 N) {
float p = fract((i + sampleOffset) / float(TOTAL_SAMPLES));
vec3 H = texture2D(normalDistribution,vec2(roughness, p)).rgb;
return transformNormal(H, N);
}
float G_Smith(float g, float ndv, float ndl) {
float roughness = 1.0 - g;
float k = roughness * roughness / 2.0;
float G1V = ndv / (ndv * (1.0 - k) + k);
float G1L = ndl / (ndl * (1.0 - k) + k);
return G1L * G1V;
}
vec3 F_Schlick(float ndv, vec3 spec) {
return spec + (1.0 - spec) * pow(1.0 - ndv, 5.0);
}
#endif
float fetchDepth(sampler2D depthTexture, vec2 uv)
{
vec4 depthTexel = texture2D(depthTexture, uv);
return depthTexel.r * 2.0 - 1.0;
}
float linearDepth(float depth)
{
if (projection[3][3] == 0.0) {
// Perspective
return projection[3][2] / (depth * projection[2][3] - projection[2][2]);
}
else {
// Symmetrical orthographic
// PENDING
return (depth - projection[3][2]) / projection[2][2];
}
}
bool rayIntersectDepth(float rayZNear, float rayZFar, vec2 hitPixel)
{
// Swap if bigger
if (rayZFar > rayZNear)
{
float t = rayZFar; rayZFar = rayZNear; rayZNear = t;
}
float cameraZ = linearDepth(fetchDepth(gBufferTexture2, hitPixel));
// Cross z
return rayZFar <= cameraZ && rayZNear >= cameraZ - zThicknessThreshold;
}
// Trace a ray in screenspace from rayOrigin (in camera space) pointing in rayDir (in camera space)
//
// With perspective correct interpolation
//
// Returns true if the ray hits a pixel in the depth buffer
// and outputs the hitPixel (in UV space), the hitPoint (in camera space) and the number
// of iterations it took to get there.
//
// Based on Morgan McGuire & Mike Mara's GLSL implementation:
// http://casual-effects.blogspot.com/2014/08/screen-space-ray-tracing.html
bool traceScreenSpaceRay(
vec3 rayOrigin, vec3 rayDir, float jitter,
out vec2 hitPixel, out vec3 hitPoint, out float iterationCount
)
{
// Clip to the near plane
float rayLength = ((rayOrigin.z + rayDir.z * maxRayDistance) > -nearZ)
? (-nearZ - rayOrigin.z) / rayDir.z : maxRayDistance;
vec3 rayEnd = rayOrigin + rayDir * rayLength;
// Project into homogeneous clip space
vec4 H0 = projection * vec4(rayOrigin, 1.0);
vec4 H1 = projection * vec4(rayEnd, 1.0);
float k0 = 1.0 / H0.w, k1 = 1.0 / H1.w;
// The interpolated homogeneous version of the camera space points
vec3 Q0 = rayOrigin * k0, Q1 = rayEnd * k1;
// Screen space endpoints
// PENDING viewportSize ?
vec2 P0 = (H0.xy * k0 * 0.5 + 0.5) * viewportSize;
vec2 P1 = (H1.xy * k1 * 0.5 + 0.5) * viewportSize;
// If the line is degenerate, make it cover at least one pixel to avoid handling
// zero-pixel extent as a special case later
P1 += dot(P1 - P0, P1 - P0) < 0.0001 ? 0.01 : 0.0;
vec2 delta = P1 - P0;
// Permute so that the primary iteration is in x to collapse
// all quadrant-specific DDA case later
bool permute = false;
if (abs(delta.x) < abs(delta.y)) {
// More vertical line
permute = true;
delta = delta.yx;
P0 = P0.yx;
P1 = P1.yx;
}
float stepDir = sign(delta.x);
float invdx = stepDir / delta.x;
// Track the derivatives of Q and K
vec3 dQ = (Q1 - Q0) * invdx;
float dk = (k1 - k0) * invdx;
vec2 dP = vec2(stepDir, delta.y * invdx);
// Calculate pixel stride based on distance of ray origin from camera.
// Since perspective means distant objects will be smaller in screen space
// we can use this to have higher quality reflections for far away objects
// while still using a large pixel stride for near objects (and increase performance)
// this also helps mitigate artifacts on distant reflections when we use a large
// pixel stride.
float strideScaler = 1.0 - min(1.0, -rayOrigin.z / pixelStrideZCutoff);
float pixStride = 1.0 + strideScaler * pixelStride;
// Scale derivatives by the desired pixel stride and the offset the starting values by the jitter fraction
dP *= pixStride; dQ *= pixStride; dk *= pixStride;
// Track ray step and derivatives in a vec4 to parallelize
vec4 pqk = vec4(P0, Q0.z, k0);
vec4 dPQK = vec4(dP, dQ.z, dk);
pqk += dPQK * jitter;
float rayZFar = (dPQK.z * 0.5 + pqk.z) / (dPQK.w * 0.5 + pqk.w);
float rayZNear;
bool intersect = false;
vec2 texelSize = 1.0 / viewportSize;
iterationCount = 0.0;
for (int i = 0; i < MAX_ITERATION; i++)
{
pqk += dPQK;
rayZNear = rayZFar;
rayZFar = (dPQK.z * 0.5 + pqk.z) / (dPQK.w * 0.5 + pqk.w);
hitPixel = permute ? pqk.yx : pqk.xy;
hitPixel *= texelSize;
intersect = rayIntersectDepth(rayZNear, rayZFar, hitPixel);
iterationCount += 1.0;
dPQK *= 1.2;
// PENDING Right on all platforms?
if (intersect) {
break;
}
}
Q0.xy += dQ.xy * iterationCount;
Q0.z = pqk.z;
hitPoint = Q0 / pqk.w;
return intersect;
}
float calculateAlpha(
float iterationCount, float reflectivity,
vec2 hitPixel, vec3 hitPoint, float dist, vec3 rayDir
)
{
float alpha = clamp(reflectivity, 0.0, 1.0);
// Fade ray hits that approach the maximum iterations
alpha *= 1.0 - (iterationCount / float(MAX_ITERATION));
// Fade ray hits that approach the screen edge
vec2 hitPixelNDC = hitPixel * 2.0 - 1.0;
float maxDimension = min(1.0, max(abs(hitPixelNDC.x), abs(hitPixelNDC.y)));
alpha *= 1.0 - max(0.0, maxDimension - screenEdgeFadeStart) / (1.0 - screenEdgeFadeStart);
// Fade ray hits base on how much they face the camera
float _eyeFadeStart = eyeFadeStart;
float _eyeFadeEnd = eyeFadeEnd;
if (_eyeFadeStart > _eyeFadeEnd) {
float tmp = _eyeFadeEnd;
_eyeFadeEnd = _eyeFadeStart;
_eyeFadeStart = tmp;
}
float eyeDir = clamp(rayDir.z, _eyeFadeStart, _eyeFadeEnd);
alpha *= 1.0 - (eyeDir - _eyeFadeStart) / (_eyeFadeEnd - _eyeFadeStart);
// Fade ray hits based on distance from ray origin
alpha *= 1.0 - clamp(dist / maxRayDistance, 0.0, 1.0);
return alpha;
}
@import clay.util.rand
@import clay.util.rgbm
void main()
{
vec4 normalAndGloss = texture2D(gBufferTexture1, v_Texcoord);
// Is empty
if (dot(normalAndGloss.rgb, vec3(1.0)) == 0.0) {
discard;
}
float g = normalAndGloss.a;
#if !defined(PHYSICALLY_CORRECT)
if (g <= minGlossiness) {
discard;
}
#endif
float reflectivity = (g - minGlossiness) / (1.0 - minGlossiness);
vec3 N = normalize(normalAndGloss.rgb * 2.0 - 1.0);
N = normalize((toViewSpace * vec4(N, 0.0)).xyz);
// Position in view
vec4 projectedPos = vec4(v_Texcoord * 2.0 - 1.0, fetchDepth(gBufferTexture2, v_Texcoord), 1.0);
vec4 pos = projectionInv * projectedPos;
vec3 rayOrigin = pos.xyz / pos.w;
vec3 V = -normalize(rayOrigin);
float ndv = clamp(dot(N, V), 0.0, 1.0);
float iterationCount;
float jitter = rand(fract(v_Texcoord + jitterOffset));
#ifdef PHYSICALLY_CORRECT
vec4 color = vec4(vec3(0.0), 1.0);
vec4 albedoMetalness = texture2D(gBufferTexture3, v_Texcoord);
vec3 albedo = albedoMetalness.rgb;
float m = albedoMetalness.a;
vec3 diffuseColor = albedo * (1.0 - m);
vec3 spec = mix(vec3(0.04), albedo, m);
// PENDING Add noise?
float jitter2 = rand(fract(v_Texcoord)) * float(TOTAL_SAMPLES);
for (int i = 0; i < SAMPLE_PER_FRAME; i++) {
vec3 H = importanceSampleNormalGGX(float(i) + jitter2, 1.0 - g, N);
// TODO Normal
// vec3 H = transformNormal(lambertNormals[i], N);
// vec3 rayDir = H;
vec3 rayDir = normalize(reflect(-V, H));
#else
vec3 rayDir = normalize(reflect(-V, N));
#endif
vec2 hitPixel;
vec3 hitPoint;
bool intersect = traceScreenSpaceRay(rayOrigin, rayDir, jitter, hitPixel, hitPoint, iterationCount);
float dist = distance(rayOrigin, hitPoint);
vec3 hitNormal = texture2D(gBufferTexture1, hitPixel).rgb * 2.0 - 1.0;
hitNormal = normalize((toViewSpace * vec4(hitNormal, 0.0)).xyz);
#ifdef PHYSICALLY_CORRECT
float ndl = clamp(dot(N, rayDir), 0.0, 1.0);
float vdh = clamp(dot(V, H), 0.0, 1.0);
float ndh = clamp(dot(N, H), 0.0, 1.0);
vec3 litTexel = vec3(0.0);
if (dot(hitNormal, rayDir) < 0.0 && intersect) {
litTexel = texture2D(sourceTexture, hitPixel).rgb;
// PENDING
litTexel *= pow(clamp(1.0 - dist / 200.0, 0.0, 1.0), 3.0);
// color.rgb += ndl * litTexel * fade * diffuseColor;
}
else {
// Fetch from environment
#ifdef SPECULARCUBEMAP_ENABLED
vec3 rayDirW = normalize(toWorldSpace * vec4(rayDir, 0.0)).rgb;
litTexel = RGBMDecode(textureCubeLodEXT(specularCubemap, rayDirW, 0.0), 8.12).rgb * specularIntensity;
#endif
}
color.rgb += ndl * litTexel * (
F_Schlick(ndl, spec) * G_Smith(g, ndv, ndl) * vdh / (ndh * ndv + 0.001)
);
}
color.rgb /= float(SAMPLE_PER_FRAME);
#else
// Ignore the pixel not face the ray
// TODO fadeout ?
// PENDING Can be configured?
#if !defined(SPECULARCUBEMAP_ENABLED)
if (dot(hitNormal, rayDir) >= 0.0) {
discard;
}
if (!intersect) {
discard;
}
#endif
float alpha = clamp(calculateAlpha(iterationCount, reflectivity, hitPixel, hitPoint, dist, rayDir), 0.0, 1.0);
vec4 color = texture2D(sourceTexture, hitPixel);
color.rgb *= alpha;
#ifdef SPECULARCUBEMAP_ENABLED
vec3 rayDirW = normalize(toWorldSpace * vec4(rayDir, 0.0)).rgb;
alpha = alpha * (intersect ? 1.0 : 0.0);
float bias = (1.0 -g) * 5.0;
color.rgb += (1.0 - alpha)
* RGBMDecode(textureCubeLodEXT(specularCubemap, rayDirW, bias), 8.12).rgb
* specularIntensity;
#endif
#endif
gl_FragColor = encodeHDR(color);
}
@end
// https://bartwronski.com/2014/03/23/gdc-follow-up-screenspace-reflections-filtering-and-up-sampling/
@export ecgl.ssr.blur
uniform sampler2D texture;
uniform sampler2D gBufferTexture1;
uniform sampler2D gBufferTexture2;
uniform mat4 projection;
uniform float depthRange : 0.05;
varying vec2 v_Texcoord;
uniform vec2 textureSize;
uniform float blurSize : 1.0;
#ifdef BLEND
#ifdef SSAOTEX_ENABLED
uniform sampler2D ssaoTex;
#endif
uniform sampler2D sourceTexture;
#endif
float getLinearDepth(vec2 coord)
{
float depth = texture2D(gBufferTexture2, coord).r * 2.0 - 1.0;
return projection[3][2] / (depth * projection[2][3] - projection[2][2]);
}
@import clay.util.rgbm
void main()
{
@import clay.compositor.kernel.gaussian_9
vec4 centerNTexel = texture2D(gBufferTexture1, v_Texcoord);
float g = centerNTexel.a;
float maxBlurSize = clamp(1.0 - g, 0.0, 1.0) * blurSize;
#ifdef VERTICAL
vec2 off = vec2(0.0, maxBlurSize / textureSize.y);
#else
vec2 off = vec2(maxBlurSize / textureSize.x, 0.0);
#endif
vec2 coord = v_Texcoord;
vec4 sum = vec4(0.0);
float weightAll = 0.0;
vec3 cN = centerNTexel.rgb * 2.0 - 1.0;
float cD = getLinearDepth(v_Texcoord);
for (int i = 0; i < 9; i++) {
vec2 coord = clamp((float(i) - 4.0) * off + v_Texcoord, vec2(0.0), vec2(1.0));
float w = gaussianKernel[i]
* clamp(dot(cN, texture2D(gBufferTexture1, coord).rgb * 2.0 - 1.0), 0.0, 1.0);
float d = getLinearDepth(coord);
w *= (1.0 - smoothstep(abs(cD - d) / depthRange, 0.0, 1.0));
weightAll += w;
sum += decodeHDR(texture2D(texture, coord)) * w;
}
#ifdef BLEND
float aoFactor = 1.0;
#ifdef SSAOTEX_ENABLED
aoFactor = texture2D(ssaoTex, v_Texcoord).r;
#endif
gl_FragColor = encodeHDR(
sum / weightAll * aoFactor + decodeHDR(texture2D(sourceTexture, v_Texcoord))
);
#else
gl_FragColor = encodeHDR(sum / weightAll);
#endif
}
@end