SSR.glsl 13.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
// http://www.kode80.com/blog/2015/03/11/screen-space-reflections-in-unity-5/
// http://casual-effects.blogspot.jp/2014/08/screen-space-ray-tracing.html
@export ecgl.ssr.main

#define SHADER_NAME SSR
#define MAX_ITERATION 20;
#define SAMPLE_PER_FRAME 5;
#define TOTAL_SAMPLES 128;

uniform sampler2D sourceTexture;
uniform sampler2D gBufferTexture1;
uniform sampler2D gBufferTexture2;
uniform sampler2D gBufferTexture3;
uniform samplerCube specularCubemap;
uniform float specularIntensity: 1;

uniform mat4 projection;
uniform mat4 projectionInv;
uniform mat4 toViewSpace;
uniform mat4 toWorldSpace;

uniform float maxRayDistance: 200;

uniform float pixelStride: 16;
uniform float pixelStrideZCutoff: 50; // ray origin Z at this distance will have a pixel stride of 1.0

uniform float screenEdgeFadeStart: 0.9; // distance to screen edge that ray hits will start to fade (0.0 -> 1.0)

uniform float eyeFadeStart : 0.2; // ray direction's Z that ray hits will start to fade (0.0 -> 1.0)
uniform float eyeFadeEnd: 0.8; // ray direction's Z that ray hits will be cut (0.0 -> 1.0)

uniform float minGlossiness: 0.2; // Object larger than minGlossiness will have ssr effect
uniform float zThicknessThreshold: 1;

uniform float nearZ;
uniform vec2 viewportSize : VIEWPORT_SIZE;

uniform float jitterOffset: 0;

varying vec2 v_Texcoord;

#ifdef DEPTH_DECODE
@import clay.util.decode_float
#endif

#ifdef PHYSICALLY_CORRECT
// uniform vec3 lambertNormals[SAMPLE_PER_FRAME];
uniform sampler2D normalDistribution;
uniform float sampleOffset: 0;
uniform vec2 normalDistributionSize;

vec3 transformNormal(vec3 H, vec3 N) {
    vec3 upVector = N.y > 0.999 ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0);
    vec3 tangentX = normalize(cross(N, upVector));
    vec3 tangentZ = cross(N, tangentX);
    // Tangent to world space
    return normalize(tangentX * H.x + N * H.y + tangentZ * H.z);
}
vec3 importanceSampleNormalGGX(float i, float roughness, vec3 N) {
    float p = fract((i + sampleOffset) / float(TOTAL_SAMPLES));
    vec3 H = texture2D(normalDistribution,vec2(roughness, p)).rgb;
    return transformNormal(H, N);
}
float G_Smith(float g, float ndv, float ndl) {
    float roughness = 1.0 - g;
    float k = roughness * roughness / 2.0;
    float G1V = ndv / (ndv * (1.0 - k) + k);
    float G1L = ndl / (ndl * (1.0 - k) + k);
    return G1L * G1V;
}
vec3 F_Schlick(float ndv, vec3 spec) {
    return spec + (1.0 - spec) * pow(1.0 - ndv, 5.0);
}
#endif

float fetchDepth(sampler2D depthTexture, vec2 uv)
{
    vec4 depthTexel = texture2D(depthTexture, uv);
    return depthTexel.r * 2.0 - 1.0;
}

float linearDepth(float depth)
{
    if (projection[3][3] == 0.0) {
        // Perspective
        return projection[3][2] / (depth * projection[2][3] - projection[2][2]);
    }
    else {
        // Symmetrical orthographic
        // PENDING
        return (depth - projection[3][2]) / projection[2][2];
    }
}

bool rayIntersectDepth(float rayZNear, float rayZFar, vec2 hitPixel)
{
    // Swap if bigger
    if (rayZFar > rayZNear)
    {
        float t = rayZFar; rayZFar = rayZNear; rayZNear = t;
    }
    float cameraZ = linearDepth(fetchDepth(gBufferTexture2, hitPixel));
    // Cross z
    return rayZFar <= cameraZ && rayZNear >= cameraZ - zThicknessThreshold;
}

// Trace a ray in screenspace from rayOrigin (in camera space) pointing in rayDir (in camera space)
//
// With perspective correct interpolation
//
// Returns true if the ray hits a pixel in the depth buffer
// and outputs the hitPixel (in UV space), the hitPoint (in camera space) and the number
// of iterations it took to get there.
//
// Based on Morgan McGuire & Mike Mara's GLSL implementation:
// http://casual-effects.blogspot.com/2014/08/screen-space-ray-tracing.html

bool traceScreenSpaceRay(
    vec3 rayOrigin, vec3 rayDir, float jitter,
    out vec2 hitPixel, out vec3 hitPoint, out float iterationCount
)
{
    // Clip to the near plane
    float rayLength = ((rayOrigin.z + rayDir.z * maxRayDistance) > -nearZ)
        ? (-nearZ - rayOrigin.z) / rayDir.z : maxRayDistance;

    vec3 rayEnd = rayOrigin + rayDir * rayLength;

    // Project into homogeneous clip space
    vec4 H0 = projection * vec4(rayOrigin, 1.0);
    vec4 H1 = projection * vec4(rayEnd, 1.0);

    float k0 = 1.0 / H0.w, k1 = 1.0 / H1.w;

    // The interpolated homogeneous version of the camera space points
    vec3 Q0 = rayOrigin * k0, Q1 = rayEnd * k1;

    // Screen space endpoints
    // PENDING viewportSize ?
    vec2 P0 = (H0.xy * k0 * 0.5 + 0.5) * viewportSize;
    vec2 P1 = (H1.xy * k1 * 0.5 + 0.5) * viewportSize;

    // If the line is degenerate, make it cover at least one pixel to avoid handling
    // zero-pixel extent as a special case later
    P1 += dot(P1 - P0, P1 - P0) < 0.0001 ? 0.01 : 0.0;
    vec2 delta = P1 - P0;

    // Permute so that the primary iteration is in x to collapse
    // all quadrant-specific DDA case later
    bool permute = false;
    if (abs(delta.x) < abs(delta.y)) {
        // More vertical line
        permute = true;
        delta = delta.yx;
        P0 = P0.yx;
        P1 = P1.yx;
    }
    float stepDir = sign(delta.x);
    float invdx = stepDir / delta.x;

    // Track the derivatives of Q and K
    vec3 dQ = (Q1 - Q0) * invdx;
    float dk = (k1 - k0) * invdx;

    vec2 dP = vec2(stepDir, delta.y * invdx);

    // Calculate pixel stride based on distance of ray origin from camera.
    // Since perspective means distant objects will be smaller in screen space
    // we can use this to have higher quality reflections for far away objects
    // while still using a large pixel stride for near objects (and increase performance)
    // this also helps mitigate artifacts on distant reflections when we use a large
    // pixel stride.
    float strideScaler = 1.0 - min(1.0, -rayOrigin.z / pixelStrideZCutoff);
    float pixStride = 1.0 + strideScaler * pixelStride;

    // Scale derivatives by the desired pixel stride and the offset the starting values by the jitter fraction
    dP *= pixStride; dQ *= pixStride; dk *= pixStride;

    // Track ray step and derivatives in a vec4 to parallelize
    vec4 pqk = vec4(P0, Q0.z, k0);
    vec4 dPQK = vec4(dP, dQ.z, dk);

    pqk += dPQK * jitter;
    float rayZFar = (dPQK.z * 0.5 + pqk.z) / (dPQK.w * 0.5 + pqk.w);
    float rayZNear;

    bool intersect = false;

    vec2 texelSize = 1.0 / viewportSize;

    iterationCount = 0.0;

    for (int i = 0; i < MAX_ITERATION; i++)
    {
        pqk += dPQK;

        rayZNear = rayZFar;
        rayZFar = (dPQK.z * 0.5 + pqk.z) / (dPQK.w * 0.5 + pqk.w);

        hitPixel = permute ? pqk.yx : pqk.xy;
        hitPixel *= texelSize;

        intersect = rayIntersectDepth(rayZNear, rayZFar, hitPixel);

        iterationCount += 1.0;

        dPQK *= 1.2;

        // PENDING Right on all platforms?
        if (intersect) {
            break;
        }
    }

    Q0.xy += dQ.xy * iterationCount;
    Q0.z = pqk.z;
    hitPoint = Q0 / pqk.w;

    return intersect;
}

float calculateAlpha(
    float iterationCount, float reflectivity,
    vec2 hitPixel, vec3 hitPoint, float dist, vec3 rayDir
)
{
    float alpha = clamp(reflectivity, 0.0, 1.0);
    // Fade ray hits that approach the maximum iterations
    alpha *= 1.0 - (iterationCount / float(MAX_ITERATION));
    // Fade ray hits that approach the screen edge
    vec2 hitPixelNDC = hitPixel * 2.0 - 1.0;
    float maxDimension = min(1.0, max(abs(hitPixelNDC.x), abs(hitPixelNDC.y)));
    alpha *= 1.0 - max(0.0, maxDimension - screenEdgeFadeStart) / (1.0 - screenEdgeFadeStart);

    // Fade ray hits base on how much they face the camera
    float _eyeFadeStart = eyeFadeStart;
    float _eyeFadeEnd = eyeFadeEnd;
    if (_eyeFadeStart > _eyeFadeEnd) {
        float tmp = _eyeFadeEnd;
        _eyeFadeEnd = _eyeFadeStart;
        _eyeFadeStart = tmp;
    }

    float eyeDir = clamp(rayDir.z, _eyeFadeStart, _eyeFadeEnd);
    alpha *= 1.0 - (eyeDir - _eyeFadeStart) / (_eyeFadeEnd - _eyeFadeStart);

    // Fade ray hits based on distance from ray origin
    alpha *= 1.0 - clamp(dist / maxRayDistance, 0.0, 1.0);

    return alpha;
}

@import clay.util.rand

@import clay.util.rgbm

void main()
{
    vec4 normalAndGloss = texture2D(gBufferTexture1, v_Texcoord);

    // Is empty
    if (dot(normalAndGloss.rgb, vec3(1.0)) == 0.0) {
        discard;
    }

    float g = normalAndGloss.a;
#if !defined(PHYSICALLY_CORRECT)
    if (g <= minGlossiness) {
        discard;
    }
#endif

    float reflectivity = (g - minGlossiness) / (1.0 - minGlossiness);

    vec3 N = normalize(normalAndGloss.rgb * 2.0 - 1.0);
    N = normalize((toViewSpace * vec4(N, 0.0)).xyz);

    // Position in view
    vec4 projectedPos = vec4(v_Texcoord * 2.0 - 1.0, fetchDepth(gBufferTexture2, v_Texcoord), 1.0);
    vec4 pos = projectionInv * projectedPos;
    vec3 rayOrigin = pos.xyz / pos.w;
    vec3 V = -normalize(rayOrigin);

    float ndv = clamp(dot(N, V), 0.0, 1.0);
    float iterationCount;
    float jitter = rand(fract(v_Texcoord + jitterOffset));

#ifdef PHYSICALLY_CORRECT
    vec4 color = vec4(vec3(0.0), 1.0);
    vec4 albedoMetalness = texture2D(gBufferTexture3, v_Texcoord);
    vec3 albedo = albedoMetalness.rgb;
    float m = albedoMetalness.a;
    vec3 diffuseColor = albedo * (1.0 - m);
    vec3 spec = mix(vec3(0.04), albedo, m);

    // PENDING Add noise?
    float jitter2 = rand(fract(v_Texcoord)) * float(TOTAL_SAMPLES);

    for (int i = 0; i < SAMPLE_PER_FRAME; i++) {
        vec3 H = importanceSampleNormalGGX(float(i) + jitter2, 1.0 - g, N);
        // TODO Normal
        // vec3 H = transformNormal(lambertNormals[i], N);
        // vec3 rayDir = H;
        vec3 rayDir = normalize(reflect(-V, H));
#else
        vec3 rayDir = normalize(reflect(-V, N));
#endif
        vec2 hitPixel;
        vec3 hitPoint;

        bool intersect = traceScreenSpaceRay(rayOrigin, rayDir, jitter, hitPixel, hitPoint, iterationCount);

        float dist = distance(rayOrigin, hitPoint);

        vec3 hitNormal = texture2D(gBufferTexture1, hitPixel).rgb * 2.0 - 1.0;
        hitNormal = normalize((toViewSpace * vec4(hitNormal, 0.0)).xyz);
#ifdef PHYSICALLY_CORRECT
        float ndl = clamp(dot(N, rayDir), 0.0, 1.0);
        float vdh = clamp(dot(V, H), 0.0, 1.0);
        float ndh = clamp(dot(N, H), 0.0, 1.0);
        vec3 litTexel = vec3(0.0);
        if (dot(hitNormal, rayDir) < 0.0 && intersect) {
            litTexel = texture2D(sourceTexture, hitPixel).rgb;
            // PENDING
            litTexel *= pow(clamp(1.0 - dist / 200.0, 0.0, 1.0), 3.0);

            // color.rgb += ndl * litTexel * fade * diffuseColor;
        }
        else {
            // Fetch from environment
#ifdef SPECULARCUBEMAP_ENABLED
            vec3 rayDirW = normalize(toWorldSpace * vec4(rayDir, 0.0)).rgb;
            litTexel = RGBMDecode(textureCubeLodEXT(specularCubemap, rayDirW, 0.0), 8.12).rgb * specularIntensity;
#endif
        }
        color.rgb += ndl * litTexel * (
                F_Schlick(ndl, spec) * G_Smith(g, ndv, ndl) * vdh / (ndh * ndv + 0.001)
            );
    }
    color.rgb /= float(SAMPLE_PER_FRAME);
#else
    // Ignore the pixel not face the ray
    // TODO fadeout ?
    // PENDING Can be configured?
#if !defined(SPECULARCUBEMAP_ENABLED)
    if (dot(hitNormal, rayDir) >= 0.0) {
        discard;
    }
    if (!intersect) {
        discard;
    }
#endif
    float alpha = clamp(calculateAlpha(iterationCount, reflectivity, hitPixel, hitPoint, dist, rayDir), 0.0, 1.0);
    vec4 color = texture2D(sourceTexture, hitPixel);
    color.rgb *= alpha;

#ifdef SPECULARCUBEMAP_ENABLED
    vec3 rayDirW = normalize(toWorldSpace * vec4(rayDir, 0.0)).rgb;
    alpha = alpha * (intersect ? 1.0 : 0.0);
    float bias = (1.0 -g) * 5.0;
    color.rgb += (1.0 - alpha)
        * RGBMDecode(textureCubeLodEXT(specularCubemap, rayDirW, bias), 8.12).rgb
        * specularIntensity;
#endif

#endif

    gl_FragColor = encodeHDR(color);
}
@end

// https://bartwronski.com/2014/03/23/gdc-follow-up-screenspace-reflections-filtering-and-up-sampling/
@export ecgl.ssr.blur

uniform sampler2D texture;
uniform sampler2D gBufferTexture1;
uniform sampler2D gBufferTexture2;
uniform mat4 projection;
uniform float depthRange : 0.05;

varying vec2 v_Texcoord;

uniform vec2 textureSize;
uniform float blurSize : 1.0;

#ifdef BLEND
    #ifdef SSAOTEX_ENABLED
uniform sampler2D ssaoTex;
    #endif
uniform sampler2D sourceTexture;
#endif

float getLinearDepth(vec2 coord)
{
    float depth = texture2D(gBufferTexture2, coord).r * 2.0 - 1.0;
    return projection[3][2] / (depth * projection[2][3] - projection[2][2]);
}

@import clay.util.rgbm


void main()
{
    @import clay.compositor.kernel.gaussian_9

    vec4 centerNTexel = texture2D(gBufferTexture1, v_Texcoord);
    float g = centerNTexel.a;
    float maxBlurSize = clamp(1.0 - g, 0.0, 1.0) * blurSize;
#ifdef VERTICAL
    vec2 off = vec2(0.0, maxBlurSize / textureSize.y);
#else
    vec2 off = vec2(maxBlurSize / textureSize.x, 0.0);
#endif

    vec2 coord = v_Texcoord;

    vec4 sum = vec4(0.0);
    float weightAll = 0.0;

    vec3 cN = centerNTexel.rgb * 2.0 - 1.0;
    float cD = getLinearDepth(v_Texcoord);
    for (int i = 0; i < 9; i++) {
        vec2 coord = clamp((float(i) - 4.0) * off + v_Texcoord, vec2(0.0), vec2(1.0));
        float w = gaussianKernel[i]
            * clamp(dot(cN, texture2D(gBufferTexture1, coord).rgb * 2.0 - 1.0), 0.0, 1.0);
        float d = getLinearDepth(coord);
        w *= (1.0 - smoothstep(abs(cD - d) / depthRange, 0.0, 1.0));

        weightAll += w;
        sum += decodeHDR(texture2D(texture, coord)) * w;
    }

#ifdef BLEND
    float aoFactor = 1.0;
    #ifdef SSAOTEX_ENABLED
    aoFactor = texture2D(ssaoTex, v_Texcoord).r;
    #endif
    gl_FragColor = encodeHDR(
        sum / weightAll * aoFactor + decodeHDR(texture2D(sourceTexture, v_Texcoord))
    );
#else
    gl_FragColor = encodeHDR(sum / weightAll);
#endif
}

@end