simplex.js 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * A fast javascript implementation of simplex noise by Jonas Wagner
 *
 * Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
 * Which is based on example code by Stefan Gustavson (stegu@itn.liu.se).
 * With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 * Better rank ordering method by Stefan Gustavson in 2012.
 *
 *
 * Copyright (C) 2016 Jonas Wagner
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */
(function() {
'use strict';

var F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
var G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
var F3 = 1.0 / 3.0;
var G3 = 1.0 / 6.0;
var F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
var G4 = (5.0 - Math.sqrt(5.0)) / 20.0;

function SimplexNoise(random) {
  if (!random) random = Math.random;
  this.p = buildPermutationTable(random);
  this.perm = new Uint8Array(512);
  this.permMod12 = new Uint8Array(512);
  for (var i = 0; i < 512; i++) {
    this.perm[i] = this.p[i & 255];
    this.permMod12[i] = this.perm[i] % 12;
  }

}
SimplexNoise.prototype = {
    grad3: new Float32Array([1, 1, 0,
                            -1, 1, 0,
                            1, -1, 0,

                            -1, -1, 0,
                            1, 0, 1,
                            -1, 0, 1,

                            1, 0, -1,
                            -1, 0, -1,
                            0, 1, 1,

                            0, -1, 1,
                            0, 1, -1,
                            0, -1, -1]),
    grad4: new Float32Array([0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1,
                            0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1,
                            1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1,
                            -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1,
                            1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1,
                            -1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1,
                            1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0,
                            -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0]),
    noise2D: function(xin, yin) {
        var permMod12 = this.permMod12;
        var perm = this.perm;
        var grad3 = this.grad3;
        var n0 = 0; // Noise contributions from the three corners
        var n1 = 0;
        var n2 = 0;
        // Skew the input space to determine which simplex cell we're in
        var s = (xin + yin) * F2; // Hairy factor for 2D
        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var t = (i + j) * G2;
        var X0 = i - t; // Unskew the cell origin back to (x,y) space
        var Y0 = j - t;
        var x0 = xin - X0; // The x,y distances from the cell origin
        var y0 = yin - Y0;
        // For the 2D case, the simplex shape is an equilateral triangle.
        // Determine which simplex we are in.
        var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
        if (x0 > y0) {
          i1 = 1;
          j1 = 0;
        } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
        else {
          i1 = 0;
          j1 = 1;
        } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
        // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
        // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
        // c = (3-sqrt(3))/6
        var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
        var y1 = y0 - j1 + G2;
        var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
        var y2 = y0 - 1.0 + 2.0 * G2;
        // Work out the hashed gradient indices of the three simplex corners
        var ii = i & 255;
        var jj = j & 255;
        // Calculate the contribution from the three corners
        var t0 = 0.5 - x0 * x0 - y0 * y0;
        if (t0 >= 0) {
          var gi0 = permMod12[ii + perm[jj]] * 3;
          t0 *= t0;
          n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient
        }
        var t1 = 0.5 - x1 * x1 - y1 * y1;
        if (t1 >= 0) {
          var gi1 = permMod12[ii + i1 + perm[jj + j1]] * 3;
          t1 *= t1;
          n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1);
        }
        var t2 = 0.5 - x2 * x2 - y2 * y2;
        if (t2 >= 0) {
          var gi2 = permMod12[ii + 1 + perm[jj + 1]] * 3;
          t2 *= t2;
          n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].
        return 70.0 * (n0 + n1 + n2);
      },
    // 3D simplex noise
    noise3D: function(xin, yin, zin) {
        var permMod12 = this.permMod12;
        var perm = this.perm;
        var grad3 = this.grad3;
        var n0, n1, n2, n3; // Noise contributions from the four corners
        // Skew the input space to determine which simplex cell we're in
        var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var k = Math.floor(zin + s);
        var t = (i + j + k) * G3;
        var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
        var Y0 = j - t;
        var Z0 = k - t;
        var x0 = xin - X0; // The x,y,z distances from the cell origin
        var y0 = yin - Y0;
        var z0 = zin - Z0;
        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
        // Determine which simplex we are in.
        var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
        var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
        if (x0 >= y0) {
          if (y0 >= z0) {
            i1 = 1;
            j1 = 0;
            k1 = 0;
            i2 = 1;
            j2 = 1;
            k2 = 0;
          } // X Y Z order
          else if (x0 >= z0) {
            i1 = 1;
            j1 = 0;
            k1 = 0;
            i2 = 1;
            j2 = 0;
            k2 = 1;
          } // X Z Y order
          else {
            i1 = 0;
            j1 = 0;
            k1 = 1;
            i2 = 1;
            j2 = 0;
            k2 = 1;
          } // Z X Y order
        }
        else { // x0<y0
          if (y0 < z0) {
            i1 = 0;
            j1 = 0;
            k1 = 1;
            i2 = 0;
            j2 = 1;
            k2 = 1;
          } // Z Y X order
          else if (x0 < z0) {
            i1 = 0;
            j1 = 1;
            k1 = 0;
            i2 = 0;
            j2 = 1;
            k2 = 1;
          } // Y Z X order
          else {
            i1 = 0;
            j1 = 1;
            k1 = 0;
            i2 = 1;
            j2 = 1;
            k2 = 0;
          } // Y X Z order
        }
        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
        // c = 1/6.
        var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
        var y1 = y0 - j1 + G3;
        var z1 = z0 - k1 + G3;
        var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
        var y2 = y0 - j2 + 2.0 * G3;
        var z2 = z0 - k2 + 2.0 * G3;
        var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
        var y3 = y0 - 1.0 + 3.0 * G3;
        var z3 = z0 - 1.0 + 3.0 * G3;
        // Work out the hashed gradient indices of the four simplex corners
        var ii = i & 255;
        var jj = j & 255;
        var kk = k & 255;
        // Calculate the contribution from the four corners
        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
        if (t0 < 0) n0 = 0.0;
        else {
          var gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3;
          t0 *= t0;
          n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0);
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
        if (t1 < 0) n1 = 0.0;
        else {
          var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3;
          t1 *= t1;
          n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
        if (t2 < 0) n2 = 0.0;
        else {
          var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3;
          t2 *= t2;
          n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
        if (t3 < 0) n3 = 0.0;
        else {
          var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3;
          t3 *= t3;
          n3 = t3 * t3 * (grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to stay just inside [-1,1]
        return 32.0 * (n0 + n1 + n2 + n3);
      },
    // 4D simplex noise, better simplex rank ordering method 2012-03-09
    noise4D: function(x, y, z, w) {
        var permMod12 = this.permMod12;
        var perm = this.perm;
        var grad4 = this.grad4;

        var n0, n1, n2, n3, n4; // Noise contributions from the five corners
        // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
        var s = (x + y + z + w) * F4; // Factor for 4D skewing
        var i = Math.floor(x + s);
        var j = Math.floor(y + s);
        var k = Math.floor(z + s);
        var l = Math.floor(w + s);
        var t = (i + j + k + l) * G4; // Factor for 4D unskewing
        var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
        var Y0 = j - t;
        var Z0 = k - t;
        var W0 = l - t;
        var x0 = x - X0; // The x,y,z,w distances from the cell origin
        var y0 = y - Y0;
        var z0 = z - Z0;
        var w0 = w - W0;
        // For the 4D case, the simplex is a 4D shape I won't even try to describe.
        // To find out which of the 24 possible simplices we're in, we need to
        // determine the magnitude ordering of x0, y0, z0 and w0.
        // Six pair-wise comparisons are performed between each possible pair
        // of the four coordinates, and the results are used to rank the numbers.
        var rankx = 0;
        var ranky = 0;
        var rankz = 0;
        var rankw = 0;
        if (x0 > y0) rankx++;
        else ranky++;
        if (x0 > z0) rankx++;
        else rankz++;
        if (x0 > w0) rankx++;
        else rankw++;
        if (y0 > z0) ranky++;
        else rankz++;
        if (y0 > w0) ranky++;
        else rankw++;
        if (z0 > w0) rankz++;
        else rankw++;
        var i1, j1, k1, l1; // The integer offsets for the second simplex corner
        var i2, j2, k2, l2; // The integer offsets for the third simplex corner
        var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
        // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
        // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
        // impossible. Only the 24 indices which have non-zero entries make any sense.
        // We use a thresholding to set the coordinates in turn from the largest magnitude.
        // Rank 3 denotes the largest coordinate.
        i1 = rankx >= 3 ? 1 : 0;
        j1 = ranky >= 3 ? 1 : 0;
        k1 = rankz >= 3 ? 1 : 0;
        l1 = rankw >= 3 ? 1 : 0;
        // Rank 2 denotes the second largest coordinate.
        i2 = rankx >= 2 ? 1 : 0;
        j2 = ranky >= 2 ? 1 : 0;
        k2 = rankz >= 2 ? 1 : 0;
        l2 = rankw >= 2 ? 1 : 0;
        // Rank 1 denotes the second smallest coordinate.
        i3 = rankx >= 1 ? 1 : 0;
        j3 = ranky >= 1 ? 1 : 0;
        k3 = rankz >= 1 ? 1 : 0;
        l3 = rankw >= 1 ? 1 : 0;
        // The fifth corner has all coordinate offsets = 1, so no need to compute that.
        var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
        var y1 = y0 - j1 + G4;
        var z1 = z0 - k1 + G4;
        var w1 = w0 - l1 + G4;
        var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
        var y2 = y0 - j2 + 2.0 * G4;
        var z2 = z0 - k2 + 2.0 * G4;
        var w2 = w0 - l2 + 2.0 * G4;
        var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
        var y3 = y0 - j3 + 3.0 * G4;
        var z3 = z0 - k3 + 3.0 * G4;
        var w3 = w0 - l3 + 3.0 * G4;
        var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
        var y4 = y0 - 1.0 + 4.0 * G4;
        var z4 = z0 - 1.0 + 4.0 * G4;
        var w4 = w0 - 1.0 + 4.0 * G4;
        // Work out the hashed gradient indices of the five simplex corners
        var ii = i & 255;
        var jj = j & 255;
        var kk = k & 255;
        var ll = l & 255;
        // Calculate the contribution from the five corners
        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
        if (t0 < 0) n0 = 0.0;
        else {
          var gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4;
          t0 *= t0;
          n0 = t0 * t0 * (grad4[gi0] * x0 + grad4[gi0 + 1] * y0 + grad4[gi0 + 2] * z0 + grad4[gi0 + 3] * w0);
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
        if (t1 < 0) n1 = 0.0;
        else {
          var gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) * 4;
          t1 *= t1;
          n1 = t1 * t1 * (grad4[gi1] * x1 + grad4[gi1 + 1] * y1 + grad4[gi1 + 2] * z1 + grad4[gi1 + 3] * w1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
        if (t2 < 0) n2 = 0.0;
        else {
          var gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) * 4;
          t2 *= t2;
          n2 = t2 * t2 * (grad4[gi2] * x2 + grad4[gi2 + 1] * y2 + grad4[gi2 + 2] * z2 + grad4[gi2 + 3] * w2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
        if (t3 < 0) n3 = 0.0;
        else {
          var gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) * 4;
          t3 *= t3;
          n3 = t3 * t3 * (grad4[gi3] * x3 + grad4[gi3 + 1] * y3 + grad4[gi3 + 2] * z3 + grad4[gi3 + 3] * w3);
        }
        var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
        if (t4 < 0) n4 = 0.0;
        else {
          var gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4;
          t4 *= t4;
          n4 = t4 * t4 * (grad4[gi4] * x4 + grad4[gi4 + 1] * y4 + grad4[gi4 + 2] * z4 + grad4[gi4 + 3] * w4);
        }
        // Sum up and scale the result to cover the range [-1,1]
        return 27.0 * (n0 + n1 + n2 + n3 + n4);
      }
  };

function buildPermutationTable(random) {
  var i;
  var p = new Uint8Array(256);
  for (i = 0; i < 256; i++) {
    p[i] = i;
  }
  for (i = 0; i < 255; i++) {
    var r = i + ~~(random() * (256 - i));
    var aux = p[i];
    p[i] = p[r];
    p[r] = aux;
  }
  return p;
}
SimplexNoise._buildPermutationTable = buildPermutationTable;

// amd
if (typeof define !== 'undefined' && define.amd) define(function() {return SimplexNoise;});
// common js
if (typeof exports !== 'undefined') exports.SimplexNoise = SimplexNoise;
// browser
else if (typeof window !== 'undefined') window.SimplexNoise = SimplexNoise;
// nodejs
if (typeof module !== 'undefined') {
  module.exports = SimplexNoise;
}

})();